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Abstract

The aim of this work is to address the problem of modelling the dynamical behaviour, manifested during unstable

operation, of an experimental closed loop thermosyphon. A generalised Nonlinear Auto-Regressive Moving Average

with eXogenous inputs (NARMAX) model, implemented by means of neural networks, is used to address the iden-

tification of the system dynamics by means of input–output experimental measurements.

A comparison between the experimental measurements and the results both of a mathematical model reported in

the literature and of the proposed neural model is presented. Reported results show that the proposed neural model

does not suffer of the poor correspondence between simulated and experimental data that affects the mathematical

model. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Reliable and energy-saving cooling of heat sources

represents a stringent requirement in many relevant in-

dustrial applications. Closed loop thermosyphon are an

interesting technical solution both for reliability and for

cost reduction, as they are thermo-fluid-dynamical sys-

tems in which cooling of a heat source is obtained

by circulation of a fluid without the help of mechani-

cal pumping components, and therefore of moving ele-

ments. In fact, in such systems the driving force for the

fluid motion is determined by density gradients estab-

lished between the top of the loop, which is cooled, and

the bottom of the loop, which is the heat source to be

refrigerated.

The absence of pumps drastically reduces the prob-

ability of failure in the heat removal from the heat

source and eliminates the cost of pumping. This is the

main reason for which natural is preferred to forced

convection in energy plants in which safety is a stringent

requirement, as nuclear power plants, or electrical ma-

chine rotor cooling [1–3], or where considerable costs

reduction may be obtained, as geothermal plants or

solar heaters that are characterised by low temperature

thermal source and higher circulating flow rate [4,5].

Finally, natural convection may represent one of the

possible technical solution in those systems in which the

pumping system cannot be conveniently positioned,

such as cooling systems for internal combustion engines,

turbine blade cooling or computer cooling [6,7].

The most common configurations reported in the

literature are the rectangular [8] and toroidal [9,10] ge-

ometries. In both these basic schemes the loop usually

lies on a vertical plane, is symmetrical with respect to the

vertical axis and consists of a heat source (placed in the

bottom and cooled by the circulating flow), a heat sink

(placed on top of the loop) in which the circulating flow

is cooled; the heat source and the heat sink may be

connected or not by adiabatic legs. In particular, the

toroidal loops reported in the literature usually lack of

adiabatic legs and as they simply consist of two semi-

circular heat exchanging sections directly connected;

whereas rectangular loops, as the one schematised in

Fig. 1 and which are the main object of the present study,

are usually designed with thermally isolated vertical legs

connecting the heat exchanging sections [8] (horizontal

adiabatic connection pieces may be present or not).
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Due to the relevance of their applications, natural

circulation loops stability represents a stringent re-

quirement. In fact, the oscillations of the fluid velocity

and temperature associated to unstable dynamics are

able to compromise the heat removal from the heat

source and are, therefore, extremely dangerous for the

plant safety.

The occurrence of unstable dynamics mainly depends

on the entity of the buoyancy determined by density

gradients and, therefore, proportional to the vertical

temperature difference. This term depends both on the

geometry of the system and on the heating conditions at

the boundary. It is just mentioned here that the most

common heating conditions considered in literature are

symmetrical and consist of: (a) imposed wall tempera-

ture [9,11]; (b) imposed heat flux [12,13]; (c) mixed

condition [10,14,15].

Forecasting or controlling the oscillations of the

process by means of reliable prediction models repre-

sents one of the main tasks in the field of natural cir-

culation loops. In particular, early detection of the birth

of oscillating behaviours could be useful to determine a

suitable control action.

The geometry of the system and the heating condi-

tions at the boundary play a fundamental role in the

possibility of modelling such systems. In particular, the

governing equations describing the flow inside the loop

can be exactly reduced to a three-dimensional dynamical

model exhibiting chaotic behaviour only for the toroidal

geometry either with known wall temperature or with

known heat flux. These models display dynamical be-

haviours mainly resembling those of the Lorenz sys-

tem [16]. Conversely, due to the higher complexity such

simple models have not been proposed for the cases of

mixed conditions or for other geometries. They lack, in

particular, for the rectangular geometry with adiabatic

legs as the one reported in Fig. 1, which on the other

hand represents the most common configuration in real

applications.

For this reason the stability of rectangular natural

circulation loops was studied by means of a non-linear

and distributed parameters mathematical model [1], in

which space discretisation of the non-dimensional ve-

locity and temperature was used, leading to a high order

non-linear system. The stability of the model was then

studied on the linearized model through the construction

of a stability map. Anyway, the time evolution of the

model variables was not analysed. In their paper Cam-

marata et al. [8] presented a similar analysis of a natural

circulation loop, leading both to the stability map and to

the simulation of the system dynamical behaviour. Al-

though suitable to classify the system stability, through

the construction of the stability map of the system, the

results of this model are affected by a mismatch, mainly

Fig. 1. Scheme of the rectangular natural circulation loop with adiabatic legs used during the experimental phase.
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limited to the characteristic frequencies, between exper-

imental and mathematically simulated time-series. Gen-

erally speaking, the mismatch between mathematical

models and experimental data represents the main limit

of scientific works based on this kind of mathematical

models.

In this work a different approach, based directly on

experimental measurements, was undertaken. The ex-

perimental apparatus consisted of a rectangular circu-

lation loop under mixed heating condition; therefore,

no exact mathematical model exist for the case study.

Chaotic experimental measurements were used as input–

output information for a Nonlinear Auto-Regressive

Moving Average with eXogenous inputs (NARMAX)

model, which was implemented by using Artificial

Neural Networks. The obtained model was usefully

applied to forecast the birth and the evolution of

undesired oscillations. To this aim, the outputs of the

Neural Network were recursively fed back to the input

layer in order to perform long term predictions. Results

show the possibility to effectively address the problem of

predicting the temporal evolution of natural circulation

loops by means of neural network modeling. This ability

will be used to design a controller aiming to avoid un-

stable behaviours in the loop.

2. Experimental apparatus

Table 1 reports the main dimensions of the experi-

mental natural circulation loop depicted in Fig. 1. It

consists of two copper horizontal tubes (heat transfer

sections), two vertical phirex tubes, four horizontal

phirex tubes and four 90� phirex bends. The lower

heating section consists of two independent electrical

heating wire, able to provide 0.5 kW each, winding on

the outside of the copper tube.

The upper heat extraction system is a coaxial heat

exchanger with tap water flowing in the annulus created

by an external iron case (diameter 0.2 m). In this way it

is possible to impose desired values both of the heat flux

in the lower heating section and of the temperature of

the coolant. The latter condition can be obtained by

adopting high values of the water flow rate so to mini-

mise the temperature difference between the inlet and the

outlet of the cooling water. An expansion tank open to

the atmosphere is installed on the topmost elevation of

the loop allowing the fluid volumetric expansion.

The whole system is equipped with six calibrated

ð�0:1 KÞ T-thermocouples (diameter 1.6 mm) located

(see Fig. 1): T2 and T4 on the left vertical tube, T5 and

T6 on the right vertical tube and T1 and T3 on the lower

horizontal tubes. The thermocouples are connected to a

PC that acquires five measurements per second (with a

sampling period of 0.2 s) for each of the six thermo-

couples and then stores only the mean value of these five

data. In fact, this results in a sampling period of 1 s and

allows high frequency noise components. Hence, the

result of each experimental test consists of six time-series

corresponding to the temporal evolution of the tem-

peratures measured along the loop. These temperatures

will be indicated in the following with the same name of

the thermocouples they are measured with.

A set of 16 operating conditions were detected during

the experimental tests. Each experimental test was per-

formed starting from the quiet condition, characterised

by null temperature difference between any couple of

points of the loop and hence by the absence of flow.

Therefore all tests are characterised by an initial tran-

sient behaviour rapidly evolving towards the regime

condition. The experimental grid is reported in Table 2

and indicates the name given to each experiment, which

reflects the heat flux and the cooling flow rate imposed

at the heat exchanging sections. In particular, each test

is indicated by the letter P followed by the heat power

value (in kW), a score, the letter Q and the value of the

cooling water flow rate (expressed for simplicity in

dm3=min). As an example, the name P1.8–Q1 refers to

the experimental test performed supplying to the heater

a heat power P ¼ 1:8 kW and using a cooling water flow

rate Q ¼ 1 dm3=min. Four values of the cooling water

flow rate, Q, were used per each of the four heat power P

considered.

Table 2

Experimental test grid

Q ðdm3=minÞ Heat power (W)

1600 1700 1800 1900

1 P1.6–Q1 P1.7–Q1 P1.8–Q1 P1.9–Q1

4 P1.6–Q4 P1.7–Q4 P1.8–Q4 P1.9–Q4

15 P1.6–Q15 P1.7–Q15 P1.8–Q15 P1.9–Q15

30 P1.6–Q30 P1.7–Q30 P1.8–Q30 P1.9–Q30

Table 1

Loop main dimensions

Loop height L 1270 mm

Loop width L1 1780 mm

Loop inner diameter D 26 mm

Heating section length LH 800 mm

Cooling section length LC 1000 mm
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It is just mentioned here that the experimental time-

series that were detected during the test have been shown

to be governed by chaos [17]. More in detail, the ex-

perimental apparatus may undergo chaotic behaviours

characterised by two kinds of attractors: the first ap-

pears quite similar to the typical attractor of the Lorenz

system (in particular, with two lobes), whereas the sec-

ond is characterised by a single lobe attractor quite

similar to that reported in [18].

3. NARMAX model

The complexity of the exact form of the mathe-

matical description of any real-world system often

causes the inability to determine an accurate model.

For this kind of systems, input–output models offer a

powerful mean to the identification of the system within

a certain accuracy and with reasonable computational

cost. in the present contest the possibility to apply a

Multiple Linear Regression for the identification of the

system dynamics was not considered; in fact, the cha-

otic nature of the experimental time-series pointed out

the necessity to choose a non-linear identification ap-

proach.

The NARMAX model was shown to be a general

class of non-linear input–output models [19] and pro-

vides a straightforward way to represent with adequate

approximation a large class of non-linear systems. In

mathematical terms, a NARMAX performs the iden-

tification of a system in terms of a non-linear functional

expansion of lagged inputs and outputs. In other

words, the identification of a non-linear system is based

on the characterisation of its output yðkÞ at a given

instant k, by means of the application of the non-linear

function F to the inputs and outputs in the previous

time-steps. Therefore, considering for simplicity a Sin-

gle Input–Single Output (SISO) system, yðkÞ can be

expressed as:

yðkÞ ¼ F ½yðk � 1Þ; . . . ; yðk � nyÞ; uðk � 1Þ; . . . ; uðk � nuÞ�;
ð1Þ

where uð�Þ is the input at the generic time sample.

It has been demonstrated that a NARMAX model

is able to represent a discrete time invariant non-linear

system in a region around an equilibrium if the system

has lumped parameters and it can be represented by a

linearized model in a neighbourhood of the equilibrium

[20].

A common way to built a generalised NARMAX

model (i.e. valid for different equilibria and even for

piecewise linear function F) is to use a Multi Layer

Perceptron Neural Network, which does not require the

linearisation around equilibria. The high potentials,

flexibility and easiness of use of neural networks in

modelling and pattern recognition problems is well

known and a good review of their applications to energy

systems is reported in [21].

In the present contest they were used to implement a

generalised form of the NARMAX model (1). In fact,

whereas the existence conditions of a NARMAX model

are locally valid and the function F is assumed to be

continuous and differentiable, the approximation of the

non-linear function F through combination of sigmoidal

functions, as that performed by a neural network, is

valid also for piecewise continuous functions and in

wider region of state space. Hence, if a dynamical system

needs various NARMAX models to be represented in

different regions of state space, separated by disconti-

nuity points, then a single neural network [19] is able to

interpolate the system dynamical behaviour for different

region of state space. The greater flexibility offered and

the wide number of operating conditions detected during

the experimental phase (corresponding to different re-

gions of state space) make the neural network approach

suitable for the aim of this work. As well known, neural

network used for function approximation are feed-for-

ward networks with one or more hidden layers between

the input and the output, each layer being formed by

simple computing units, called nodes or neurons. The

input–output relationship of the jth hidden node can be

expressed [22] as:

outj ¼ a
X

wijini

�
þ l

�
; ð2Þ

where ini is the ith input to the node (i.e. the output of

the ith node of the antecedent layer), outj is the node

output, wij are the weights connecting the jth node to the

nodes of the antecedent layer, l is a threshold parameter

and að�Þ is the node activation function. For simplicity,

the weights of a neural network are indicated collected

into a matrix W.

For a neural network with n inputs and m outputs,

the global input–output relationship is a function NN :
Rn ! Rm. During the training of the network, the model

receive some input vectors and the output is compared

with desired targets corresponding to these inputs. The

weights wi connecting the nodes are recursively updated,

according to a specified training algorithm, in order to

minimise a cost function that generally speaking coin-

cides with the prediction error, evaluated as the differ-

ence between the desired output (i.e. the target) and

the actual output of the network. At the end of training

the function NN : Rn ! Rm is determined. Cybenko

demonstrated that NN can uniformly approximate any

continuous function F : D � Rn ! Rm, where D is a

compact subset of Rn [23,24]. This ensures that the

function F in (1) can be approximated by a neural net-

work, so that:

yðkÞ � NN ½yðk� 1Þ; . . . ; yðk� nyÞ;uðk� 1Þ; . . . ;uðk� nuÞ�:
ð3Þ
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In this paper, the neural approach was used in order

to predict the time evolution of the system in study. The

structure of the neural model was chosen according to

some basic consideration on the process and on the

knowledge achieved on the mathematical model. In fact,

the system is represented by a set of first-order differ-

ential equations in which the number of state variables

depends on the discretisation adopted. Although the

system is theoretically infinite dimensional, for control

purposes even a low number of variables is able to give

an accurate representation of the system dynamics. In

particular, the cooling water flow rate at the cooling

section, Q, and the heat power at the heating section, P,

are the inputs to the system and completely define each

operating condition. The system outputs herein chosen

are the inlet–outlet temperature differences at the cool-

ing and heating sections, calculated as the differences

between the measures of thermocouples T4 and T6 and

between thermocouples T2 and T5, indicated in the

following respectively as DT46 and DT25, and the tem-

perature difference DT24, between the measures of

thermocouples T2 and T4 placed on the vertical leg.

These three variables were considered sufficient as: DT46
and DT25 give information on the changes occurring to

the fluid in its passage through the heat exchanging

sections and DT24 is proportional to the buoyancy, and

hence is related to the flow driving term. With this

choice of the inputs and outputs, the model structure is

closely related to the underlying process and its final

representation can be easily understood. Adapting the

general formula (3) to the present case, the input–output

relation defining the model can be expressed as:

½DT25ðkÞDT46ðkÞDT24ðkÞ�
¼ NN ½DT25ðk � 1Þ;DT46ðk � 1Þ;DT24ðk � 1Þ;Q; P �:

ð4Þ

The vectors of the input and output data sets were

initially normalised in the range ½�1; 1� so as to allow

better performances of the neural model. Considering

the slow dynamics of the system, a lower sampling rate

has been adopted, i.e. the data set was decimated con-

sidering one out of five data with a sampling period of

5 s.

Fig. 2 reports a schematic of the structure of the

neural network herein used. In the figure,
P

simply

indicates the generic neuron, performing the generic

transformation described in (2) to the weighted sum of

its inputs. As the figure shows, the neural network was

made of three layers: an input layer of five neurons that

simply receives the model inputs, a hidden layer of non-

linear neurons (implementing the tangent-sigmoid func-

tion) and an output layer with three linear neurons

(implementing the pureline function).

The number of neurons of the hidden layer was

chosen increasing it until the network was able to

guarantee good performances and a further increase was

not effective or even worsening.

In order to chose on an analytical base the perfor-

mances of the model, the properties of the error of the

model, defined as the difference between experimental

and simulated time-series, where considered. In general,

the prediction of a model are satisfactory when the error

has the same characteristic of a white noise, i.e. it has

zero mean and it is uncorrelated [22]. It is therefore

necessary to verify that the autocorrelation function of

the normalised error eðtÞ, namely, assumes the values 1

for t ¼ 0 and 0 elsewhere; in other words, it is required

to the function to behave as an impulse. This condition

is, of course, ideal and in reality it is usually sufficient

[22] to verify that /eeðtÞ, remains in a confidence band

usually fixed at the 95%, which means that /eeðtÞ must

remain inside the range �1:96=
ffiffiffiffi
N

p
(with N number of

data on which /eeðtÞ is calculated).
The neural network was trained using the Leven-

berg–Marquardt rule [25], according to which the ma-

trix of the weights of the network is updated on the

base of the Jacobian matrix, J, collecting the partial

derivatives of the error of the network e with respect to

the weights. In other words, the matrix DW collecting

the corrections of the weights in matrix W is computed

according to:

DW ¼ ðJTJ þ aIÞ�1JTe: ð5Þ

The training set was made choosing four quite dif-

ferent oscillations, in order to be well representative of

the possible system behaviours, for each of the three

time-series used as inputs per each experimental oper-

ating condition. More in detail, about 150 pattern-

target couples per each operating condition were used

during the neural network training, constituting a

training set of 2200 couples, which were previously

randomised.

The number of epochs used during the training was

not constant for all the neural networks. This was due to

Fig. 2. Scheme of the neural network.
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the adoption of a strategy for the prevention of over-

fitting. In particular, during the training, each neural

network was contemporary tested using a testing data

set, whose elements were not used for updating the

neural network weights. The criterion and the dimension

(2000 pattern–target couples) for the creation of this

data set was the same used for the creation of the

training set. This technique avoids overfitting in that

it can stop the training when testing performances get

worse from one epoch to the following.

The number of training epochs was indeed much

lower (of about two orders of magnitude) than the

number of epochs usually required from the traditional

back-propagation rule, as a consequence of the very fast

convergence ensured by the chosen training rule; in fact,

it ranged from 32 to 65 which is very.

After this phase, each neural network was tested in

order to validate the model error. This was done using

a further set, called validation set, which was created

analogously to the previous sets but considering a sen-

sibly higher number of pattern–target couples (about

15,000), which were different from those considered in

the other two sets.

Table 3 synthesises the performance of the various

networks implementing the NARMAX model (4). From

the table it is apparent that the best performances where

obtained using ten neurons, which ensured the lowest

error (both in terms of the mean value, very close to

zero, and of the mean absolute value).

The first plot in Fig. 3 shows one of the actual output

of the system, the temperature difference DT25 detected

during operating condition P1.8–Q1, and the corre-

sponding neural network output obtained simulating the

neural network with pattern–target couples from the

validation set. Note that the experimental time-series is

chaotic, as it was demonstrated in [17] and can be in-

tuitively perceived by the differences in the maximum

values of the oscillations, which point out the non-

periodicity of the phenomenon.

The second plot of the same figure reports the

autocorrelation function, /eeðtÞ, of the prediction error

calculated over a subset of 100 step of the neural net-

work (corresponding to a prediction of 500 s) for the

same data.

Both these plots evidence that the neural network

predictions are satisfactory and indicate that the training

was sufficiently wide and ensured adequate generalisa-

tion properties. In fact, it is apparent from the com-

parison the good fitting of the simulated time-series with

the experimental chaotic one and it is also evident that it

is verified that the autocorrelation function remains

bounded in the range �1:96=
ffiffiffiffi
N

p
(indicated by the da-

shed lines).

Fig. 4 reports the results obtained for another oper-

ating condition (P1.9–Q1), where the system manifest a

kind of chaotic motion morphologically similar to that

typical of Lorenz chaos. It can be seen that also in

this case the neural network performs satisfactorily the

prediction of the temperature difference DT25, and is

therefore able to adequately generalise the various pos-

sible system dynamics.

The results for the other two outputs of the system

and for the whole set of remaining operating conditions

are perfectly consistent with those presented in Figs. 3

and 4.

Moreover, the neural model was used in the predic-

tion scheme reported in Fig. 5 in order to verify its

ability to describe autonomously the time evolution of

the system variables. It is just mentioned here that other

methodologies might ensure more reliable prediction

performances; nonetheless, they were not tested as the

adopted scheme was applied only in order to test in a

simple way the possibility to extend the model predic-

tion. The scheme, in which DT ¼ ½DT25;DT46;DT24�
and the star indicates the output simulated by the neural

model, describes the following steps:

• at the generic time k � q, the neural network receives

as input the actual measurement DT ðk � qÞ and pre-

dicts the corresponding output DT ðk � qþ 1Þ�;
• the next q� 1 inputs to the model are the output of

the model itself in the previous steps with the addi-

tion of the heat power and of the cooling flow rate;

in this way, the output of the model at generic time

Table 3

Neural networks performances

Number of neurones (%) Neural network performances

Mean prediction

error (%)

Mean absolute prediction

error (%)

Uncorrelated

error (%)

4 0.827 5.2 No

6 0.258 3.9 No

8 0.076 2.8 Yes

10 0.009 1.7 Yes

12 0.014 1.9 Yes

14 0.016 1.8 Yes
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k is predicted from the actual output of the system at

time k � q;

Fig. 6 reports the mean prediction errors on the

neural model outputs plotted versus the number of

prediction steps q. In the figure ErrðDT25Þ, ErrðDT46Þ
and ErrðDT24Þ are calculated as absolute differences of

Fig. 3. Comparison between the experimental and neural network simulated time series DT25 for operating condition P1.8–Q1 (first

plot); autocorrelation function of the prediction error (second plot).

Fig. 4. Comparison between the experimental and neural network simulated time-series DT25 for operating condition P1.9–Q1.

Fig. 5. Recursive prediction scheme.
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the actual and the simulated values, respectively, of

temperature difference DT25, DT46 and DT24.
The analysis of the figure points out that the recur-

sive prediction seems to be sufficiently reliable, though

depending on the specific application, up to five steps

whereas it looses its validity for a higher number of

steps. In fact, as it was expected due the chaotic nature

of the system, the mean value of the error progressively

increases with the number of prediction steps, until it

reaches a sort of saturation value where predictions are

clearly unreliable.

In Fig. 7 comparisons between the actual output and

the three and five steps ahead predictions are, respec-

tively, reported. It must be noticed that for q ¼ 3 (cor-

responding to a prediction step of 15 s) the simulated

time-series satisfactory approximates the experimental

data. For q ¼ 5 (prediction step of 25 s) the approxi-

mation is of course slightly worse; nevertheless, the

Fig. 7. Simulated and actual output for the condition P1.8–Q1 for: (a) q ¼ 3 and (b) q ¼ 5.

Fig. 6. Mean absolute prediction errors versus number of prediction steps q.
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model is still able to reveal the occurrence of the dom-

inant patterns of the oscillations and therefore can be

used in the design of a control system.

This observation is useful to point out that the op-

timal choice for qmay depend on the specific application

of the predictive model.

4. Conclusion

In this paper the identification of the chaotic dy-

namics of a closed loop thermosyphon was addressed by

means of a generalised NARMAX model, which was

obtained by means of a neural network. The input to

the model were chosen in order to obtain a model

structure closely resembling the underlying process and

a final representation easily understandable. In particu-

lar, they were the inlet–outlet temperature differences at

the cooling and heating sections, the vertical tempera-

ture difference, the cooling water flow rate at the cooling

section, and the heat power at the heating section. The

model outputs are the one step ahead prediction of the

temporally varying inputs (i.e. the three temperature

differences). Results of the simulations show that the

model is able to give a satisfactory one-step ahead pre-

dictions of the experimental chaotic time-series and that

the chosen neural network methodology has been able

to perform correct predictions even in absence of ap-

propriate governing equations. Moreover, the developed

neural model was used in a recursive scheme in order to

test its ability to perform longer term predictions. In this

way, the predictive capability of the neural model was

tested and it was shown that satisfying predictions were

obtained, at least for a few steps ahead (due the chaotic

behaviours of the system). These are interesting results

as they point out the potential application of the neural

model herein presented to a control scheme. In fact, the

possibility to design a neural controller is actually under

study.

As a final remarks it is useful to point out that,

though the validity of the proposed model is limited to

the experimental set-up on which input–output mea-

surements were detected, it is the methodology itself that

has a very high potential and that can be exported very

easily to other systems, independently from their geo-

metrical configuration, scale and heating conditions.
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